An ultrasensitive near-infrared ratiometric fluorescent probe for imaging mitochondrial polarity in live cells and in vivo

نویسندگان

  • Haibin Xiao
  • Ping Li
  • Wei Zhang
  • Bo Tang
چکیده

Mitochondrial polarity is a crucial characteristic of these indispensable organelles, and tremendously impacts cellular events. Herein, we describe a new mitochondria-targeting fluorescent probe MCY-BF2 that is singularly sensitive and specifically responsive to mitochondrial polarity. The pull–push system in the conjugated structure of MCY-BF2 is responsible for the polarity-ultrasensitivity due to the excited state intramolecular charge transfer (ICT). By combining with cardiolipin, MCY-BF2 preferentially accumulates in mitochondria. Because the fluorescence emission wavelengths exhibit an obvious redshift with increasing media polarity, the fluorescence intensity ratio at two different wavelengths versus the solvent dielectric constant can quantify the mitochondrial polarity. Experimental results demonstrate that the fluorescent intensity of MCY-BF2 in a non-polar solvent, dioxane, is 120 times higher than that in a polar solvent, dimethyl sulfoxide. As the first near-infrared (NIR) and most sensitive fluorescent imaging probe for polarity, MCY-BF2 can locate exclusively in mitochondria in various cells and discriminate polarity differences between normal and cancer cells. Also, the intrinsic polarity variance at different developmental stages in Caenorhabditis elegans (C. elegans) was reported here for the first time. Interestingly, the embryonic development stage has a more non-polar environment with a dielectric constant of 7.20, and in contrast the polarity at the young adult stage changes to 10.07. In addition, in vivo imaging results suggest that the tumor tissues of mice have an obviously lower polarity than that in normal tissues. Altogether, the merits of the NIR property, high sensitivity and moderate Stokes shift all greatly promote the accuracy of imaging. This probe will be a promising tool for studying biological processes and the pathological mechanism of polarity-related diseases.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A fluorescent probe for H2S in vivo with fast response and high sensitivity.

In this work, we design and synthesize a new near-infrared (NIR) ratiometric fluorescent probe FD-H2S for the highly sensitive (DL 68.2 nM) detection of H2S with fast response (15 s), large emission shift (220 nm) and excellent enhancement (168-fold in ratiometric value). The probe could be applied for monitoring and imaging of exogenous or endogenous H2S in live MCF-7 cells and in live mice wi...

متن کامل

Construction of a near-infrared fluorescence turn-on and ratiometric probe for imaging palladium in living cells.

A new NIR fluorescent probe, NIR-Pd, for palladium species was designed and synthesized, based on a HD NIR fluorophore and deprotection of aryl propargyl ethers by palladium. The probe NIR-Pd displayed either a large NIR fluorescence turn-on or ratiometric response to palladium with high sensitivity and selectivity. Additionally, the novel NIR probe can monitor palladium species in live HeLa ce...

متن کامل

An ICT-based strategy to a colorimetric and ratiometric fluorescence probe for hydrogen sulfide in living cells.

We present a colorimetric and ratiometric fluorescent probe Cy-N(3) that exhibits a selective response to H(2)S. The probe employs a near-infrared cyanine as a fluorophore, and is equipped with an operating azide unit. It is readily employed for assessing intracellular H(2)S levels, and confocal ratiometric imaging is achieved successfully.

متن کامل

A near-infrared reversible and ratiometric fluorescent probe based on Se-BODIPY for the redox cycle mediated by hypobromous acid and hydrogen sulfide in living cells.

We have developed a near-infrared (NIR) reversible and ratiometric fluorescence sensor based on Se-BODIPY for the redox cycle between hypobromous acid oxidative stress and hydrogen sulfide repair. Real-time imaging shows that the probe is able to monitor intracellular HBrO/H2S redox cycle replacement.

متن کامل

The Mechanisms and Biomedical Applications of an NIR BODIPY-Based Switchable Fluorescent Probe

Highly environment-sensitive fluorophores have been desired for many biomedical applications. Because of the noninvasive operation, high sensitivity, and high specificity to the microenvironment change, they can be used as excellent probes for fluorescence sensing/imaging, cell tracking/imaging, molecular imaging for cancer, and so on (i.e., polarity, viscosity, temperature, or pH measurement)....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015